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Supplementary Note 1: Calculation details of RNT-based neural network 

As the input in the image classification task, binary images in MNIST and Fashion-MNIST 

were encoded with {0, 1}, and color images in CIFAR-10 were converted to grayscale images. 

Fig. S1(a) illustrates a random number template (544×544) used in RNT-based neural network 

generated using the 'rand' function in MATLAB within a range of 1  to 1. To ensure 

consistent random projections and the matrix size of hidden neurons under different duplicate 

array formats, an input x and its duplicate array formats were set to a matrix of size 544×544 

by zero padding. The matrix was convolved with the random number template using 'conv2' 

function in MATLAB to obtain a matrix of size 544×544, and then a square function was used 

for non-linear mapping. Subsequently, down sampling and flattening operations were 

performed to obtain hidden neurons h'' after normalization of h. The hidden layer matrix H 

was constructed using h'' employing all training samples for training. Inference testing was 

performed on the testing samples in the trained network to obtain the test accuracy. Fig. S1(b)-

(d) show test accuracies for the three datasets, and illustrate the impact of different duplicate 

array formats (1×1, 5×5, 9×9) on the test accuracies for CIFAR-10. The final network's trained 

weights, matrix β, were determined by the regularization coefficient C selected in Table.S1. 

Fig. S1(e)-(i) show the confusion matrices for the testing samples with 10,000 hidden neurons. 

Test accuracies of 97.24% and 88.19% were achieved for the MNIST and Fashion-MNIST 

datasets, respectively. For CIFAR-10, test accuracies are consistently close to each other with 

different duplicate array formats, indicating that multi-synaptic connections are not effective 

for RNT-based networks. Fig. S2 presents RNT-based network parameters, including input, 

hidden layer feature matrix, and trained weight matrix, using an airplane image from CIFAR-

10(grayscale) as example. 
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Fig. S1: Results of image classification by RNT-based neural network. (a) Random number 

template. (b)-(d), Test accuracy versus numbers of hidden neurons for MNIST, Fashion-

MNIST and CIFAR-10(grayscale) with different duplicate array formats. (e)-(g), Confusion 

matrices for the three datasets in the 1×1 format with 10,000 hidden neurons. Confusion 

matrices for CIFAR-10(grayscale) in the 5×5 (h) and 9×9 (i) format with 10,000 hidden 

neurons. 
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Fig. S2: Network parameters for RNT- based neural network. (a) Input image examples from 

CIFAR-10(grayscale) dataset in gray-encoded form. (b) Hidden layer feature matrix h. (c) 

Hidden layer feature matrix h' after down sampling. (d) Trained weight matrix β with 10,000 

hidden neurons. 
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Supplementary Note 2: Calculation details of optical model-based neural network 

For optical model-based neural networks, the sample image first needs to undergo zero-padding 

and encoding operations to obtain the incident field. The incident field corresponds to the input 

x in the general ELM neural network. We provide the discrete numerical expression from the 

sample image to the incident field distribution for different duplicate array formats. Methods 

Eq. 11 is for 1×1. For 5×5 and 9×9, 
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where [ , ]icc p qF  represents [ , ]i p qF  in the c-th row and c-th column of the duplicated array 

formats. Here, binary images in MNIST and Fashion-MNIST were phase-encoded with {0, π}, 

grayscale images in CIFAR-10 were linearly mapped within a phase range of [0, 1.8π]. We 

applied phase encoding to the three datasets, where the incident field is 0 ( , )u vjF N Ne .  

After obtaining the diffraction filed intensity matrix using Methods Eq. 16 and Eq. 8, we 

cropped the matrix from the center. To ensure consistency in the area size of 4.512 mm×4.512 

mm between the diffraction intensity matrix in optical model-based neural network and the 

ROI region in photonic neural network, considering a pixel interval of 8.3 μm in optical model, 

we cropped a matrix size of 544×544 as the final diffraction intensity, representing the hidden 

neurons h. After normalizing the diffraction intensity of each sample, we performed down 

sampling and flattening operations. Using h'' from all training samples, we constructed the 

hidden layer matrix H for training. Fig. S3(a)-(c) show test accuracies of the three datasets 

under different duplicated array formats, demonstrating the performance enhancement of 

multi-synaptic connections in optical model-based neural network. The final network's trained 

weights matrix β are determined by the regularization coefficients C selected in Table.S2. Fig. 

S3(d)-(l) show the confusion matrices for the testing samples with 10,000 hidden neurons. With 
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multi-synaptic connections, the optical model-based network achieves improved accuracy, 

especially notably on the CIFAR-10 dataset, where accuracy increased from 43.54% (1×1) to 

53.49% (5×5) with 10,000 hidden neurons, surpassing the RNT-based network. This 

enhancement demonstrates strengthened feature extraction capabilities of the optical model 

after incorporating multi-synaptic connections. Fig. S4 shows the optical model-based network 

parameters, including the input encoding type, the hidden layer feature matrix, and the trained 

weight matrix. 
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Fig. S3: Calculation results of image classification for optical model-based neural network. 

(a)-(c) Test accuracies under different numbers of hidden neurons and duplicate array formats 

for MNIST, Fashion-MNIST and CIFAR-10(grayscale). Confusion matrices for the three 

datasets in the 1×1 ((d)-(f)), 5×5 ((g)-(i)) and 9×9 ((j)-(l)) format with 10,000 hidden neurons. 
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Fig. S4: Network parameters for optical model-based neural network. (a) Input Image 

examples from CIFAR-10(grayscale) dataset in phase-encoded form. (b) Hidden layer feature 

matrix h. (c) Hidden layer feature matrix h' after down sampling. (d) Trained weight matrix β 

with 10,000 hidden neurons. 
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Supplementary Note 3: Experimental details of photonic neural network 

Fig. S5 shows the experimental workflow of photonic neural network, where the duplicate 

arrays of an input image are phase-encoded on SLM, all the rest pixels are set to a zero-phase 

level. For CIFAR-10, in addition to grayscale images, we also conducted classification tests on 

the color images of CIFAR-10 using the network structure shown in Fig. 5(e). For color images, 

each channel (RGB) is encoded separately, consistent with the encoding method for grayscale 

images. 

 

Fig. S5: The workflow of photonic neural network. 
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The phase-encoded image on SLM and the diffraction image collected from the ROI area 

(with an ROI window size of 400×400, an actual area of 4.512 mm×4.512 mm) on the camera 

sensing plane correspond to the input x and hidden neurons h, respectively, in the general ELM 

neural network. The diffraction images of all training samples after grayscale normalization 

and down sampling are used to construct the hidden layer matrix H for training. By scanning 

and selecting an appropriate regularization coefficient C, the network learns the parameters β. 

Finally, we use the trained network to classify all testing samples and perform accuracy 

statistics. It is important to emphasize that in the experiment, the input encoding of the CIFAR-

10 color dataset and the collection of diffraction images are conducted separately for samples 

from each RGB channel. This process follows the experimental procedure of the grayscale 

image classification network, with the fusion of the three channels completed only after the 

summation operation. 

Fig. S6 demonstrates the impact of different diffraction distances (9, 18, 27 cm) on test 

accuracy using the MNIST dataset with a 5×5 duplicate array and 10,000 hidden neurons. As 

the diffraction distance increases, the accuracy remains relatively stable. However, when the 

diffraction distance becomes too large, the high-frequency features of the image are gradually 

lost during propagation, leading to a decrease in accuracy. An optimized and suitable 

propagation distance of 18 cm has been identified for our experiments to enhance accuracy. 

 

Fig. S6: Experimental impact of diffraction distance on test accuracy 
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Fig. S7(a)-(d) illustrate test accuracies of the MNIST, Fashion-MNIST, CIFAR-10 (RGB), 

and CIFAR-10 (grayscale) datasets under different duplicate array formats, all demonstrating 

the performance enhancement of multi-synaptic connections. The final network's trained 

weights matrix β are determined by the regularization coefficients C selected in Table.S3. Fig. 

S7(e)-(p) show the confusion matrices for the testing samples with 10,000 hidden neurons. Fig. 

S8 presents photonic network parameters, including input, hidden layer feature matrix, and 

trained weight matrix. 

For more duplicate array formats, Fig. S9 presents the experimental performance on the 

CIFAR-10(grayscale) for array format of 1×1, 5×5, 9×9, 11×11, and 20×20. As the array 

format increases, the accuracy initially rises and then declines. The array formats of 1×1, 5×5, 

and 9×9 were identified as the optimized results in our experiments. The reason for the 

accuracy improvement with increasing array formats is discussed in Supplementary Note 4. 

However, as the array format grows further, the physical limitations of the selected ROI region 

appear to hinder the effective collection of information from the diffraction field. Therefore, 

larger array configurations are not further explored in this work. Nevertheless, the accuracy 

advantage of multi-synaptic connections over mono-synaptic connections remains evident. 

  



 

 

13 

 

 

Fig. S7: Experimental results of image classification for photonic neural network. (a)-(d) Test 

accuracy under different numbers of hidden neurons and duplicate array formats for MNIST, 

Fashion-MNIST, CIFAR-10(RGB) and CIFAR-10(grayscale). Confusion matrices for the 

mentioned datasets in the 1×1 ((e)-(h)), 5×5 ((i)-(l)) and 9×9 ((m)-(p)) format with 10,000 

hidden neurons. 
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Fig. S8: Network parameters for photonic neural network. (a) Input image examples from 

CIFAR-10(grayscale) dataset in phase-encoding form. (b) Hidden layer feature matrix h. (c) 

Hidden layer feature matrix h' after down sampling. (d) Trained weight matrix β with 10,000 

hidden neurons. 
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Fig. S9: Experimental impact of duplicate array format on test accuracy. 
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Supplementary Note 4: Noise Analysis for Multi-Synaptic Connections 

The Fourier transform is typically an integral from negative infinity to positive infinity. To deal 

with real signals with finite lengths or sizes, the input Methods Eq. 4 is truncated by 

multiplication with a window function h(u,v). In the spatial frequency domain, this operation 

corresponds to convolution with the window function's frequency spectral distribution H(U,V): 

 0( , ) ( , ) ( , ) ( , )zA U V A U V H U V S U V  .                  (2) 

The difference between mono-synaptic and multi-synaptic connections lies in the width of 

the window function. In the spatial frequency domain, the spreading of H(U,V) function causes 

crosstalk noise between frequency components, which is affected by the window width. To 

elucidate the mathematical reasons for the performance advantage of multi-synaptic 

connections, a quantitative analysis of crosstalk noise between adjacent frequencies is 

presented herein.  

Consider two frequency components with a period of l and l/2 in an input signal 0( )F u  

shown in Fig. S10(a), they have a frequency interval of 1/l in the frequency distribution of the 

signal 0 ( )A U  shown in Fig. S10(b). A window function that truncates the signal of an 

infinitely length is illustrated as a rectangular window ( ) rect( )h u u , as shown in Fig. S10(c), 

where w is the width of rectangular window. By Eq. 2, it causes a frequency component to 

spread the frequency domain in the form of ( ) sinc( )H U w wU  (Fig. S10(d)), leading to 

interference between frequencies, or so-called crosstalk noise, as shown in Fig. S10(e).  

As shown in Figs. S10(d) and (e), the spreading of (1/ )H l   is narrowed down with 

enlarging w, such that the crosstalk noise contribution is suppressed. To quantify the crosstalk 

noise, the maximum noise contribution of (1/ )H l  that contributes noise to the frequency 

components beyond 2/l is calculated in logarithm34, as shown in Fig. S10(f). Here, the signal 

length l is set to 32×8.3 μm (defined as one period width, using CIFAR-10 as an example), and 

the smallest window width to 32×8.3 μm. The window width is varied from 1 to 10 times the 
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period width, observing a decrease in crosstalk noise with increasing window. We suggest this 

reduction in crosstalk noise as a reason for improving accuracy by duplicate array formats of 

input for multi-synaptic connections in optical model-based and photonic neural networks. Fig. 

S10(f) shows a continued downward trend with increasing window width. However, due to 

other error sources (including mathematical approximations and digital noise), optical model-

based networks cannot enjoy this trend as much as physical transformation based photonic 

networks. 

For all duplicate array formats, we chose a duplicate interval of 0 as the optimized option. 

Here, we discuss the crosstalk noise for different duplicate intervals. As the duplicate interval 

increases, the rectangular function transitions from a wide rectangular window to many 

separated rectangular windows with a width of 1×1 duplicate array format (Fig. S11(a)). Taking 

a 5×5 duplicate array format as an example, it causes a frequency component to spread the 

frequency domain in the form of 
2

2 ( )

2

( ) sin (c )e j wn w d

n

wU UH  



 , where d is duplicate 

interval. According to our definition of crosstalk noise (Fig. S11(b)-(d)), as the duplicate 

interval increases, the crosstalk noise also increases, which explains the observed decrease in 

test accuracy shown in the Fig. 2(c). 
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Fig. S10: Analysis of frequency crosstalk noise for different duplicate array formats. (a) The 

input signal with a period length of l and l/2. (b) The signal spatial frequency distribution. (c) 

Rectangular window truncation function. (d) Fourier transform function of rectangular 

function at 1/l. The crosstalk noise of 1/l to 2/l is defined in the figure. (e) The frequency 

spectrum distribution of the truncation function at 1/l and 2/l. (f) The crosstalk noise at 2/l 

due to the frequency spectrum diffusion at 1/l as the window width varies. 
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Fig. S11: Analysis of frequency crosstalk noise for different duplicate intervals. (a) 

Rectangular window truncation function. (b) Fourier transform function of rectangular 

function at 1/l. The crosstalk noise of 1/l to 2/l is defined in the figure. (c) The frequency 

spectrum distribution of the truncation function at 1/l and 2/l. (d) The crosstalk noise at 2/l 

due to the frequency spectrum diffusion at 1/l as the duplicate interval varies. 
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Supplementary Note 5: Classification Performance and Computing Efficiency Analysis  

Table.S4 summarizes advanced works on digital and hardware networks, including electronic, 

hybrid and optical networks. The photonic multi-synapse neural network architecture competes 

with deep digital networks on the three datasets, outperforming most hardware networks. This 

demonstrates the superior performance of the photonic architecture, which can achieve high 

accuracy using only a single hidden layer. 

The computing speed is assessed by dividing the number of operations by the computation 

time: 

eo

o e

R R

t t






,                                  (3) 

where Ro and Re represent the optical and electrical operation counts, respectively. 3 msot 

is the optical projection time, primarily encompassing the camera's exposure time. 6.2 mset 

is the runtime for data processing and classification on the digital end, measured using the same 

method described in Methods. For a CIFAR-10 image with 32×32 input neurons, the photonic 

multi-synapse neural network architecture forms a 9×9 duplicate array and projects it to 

400×400 hidden neurons, the estimated number of optical projection operations is 

approximately 2.654×1010 OPs. This includes a nonlinear operation count of 4002, which can 

be considered negligible.  As an example, taking the down sampling to 900 hidden neurons, 

the electronic operations, which include down sampling and matrix multiplication, involve 

1.7×105 OPs. The photonic multi-synapse neural network exhibits a computing speed of 2.89 

TOPs/s.  

To assess energy consumption, the energy expenditure directly used for computation, 

denoted as direct energy efficiency, is given as 

e
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which is calculated based on the optical and electronic energy consumption that is directly used 

for the computational operations in network architectures35. The experiment utilized a laser 

power of 0.86 μW, and the exposure time for a single image is 3 ms, indicating that optical 

projection operations from SLM plane to the camera sensing plane consumes 2.58 nJ of energy. 

There is potential for further optimization of the laser power or exposure time.  

The electronic operations are processed with an Intel(R) Core(TM) i9-14900KF CPU @ 

3.20 GHz, computing speed ξe= 1.23 TOPs/s, power consumption 𝑃e= 125.0 W, and the 

calculate energy efficiency 𝜂e= ξe/𝑃e= 9.83 GOPs/J. Therefore, this architecture has a direct 

energy efficiency of 1.53 POPs/J. Considering the optical projection only, the direct energy 

efficiency can reach 10287 POPs/J.  

The computing speed of the cutting-edge GPU (NVIDIA H100 PCIe) is 51.2 TOPs/s with 

an energy efficiency of ~0.15 TOPs/J67,68. Our architecture consists solely of a single hidden 

layer network, with optical computations accounting for over 99% of the process. Expanding 

to deeper networks could increase the ratio of optical to electrical computations, thus further 

enhancing computational speed and reducing energy consumption.  

For the optical projections, the MAC operations count in our architecture is 1.327×1010. The 

energy consumption for one optical MAC operation is calculated to be 0.2 aJ. Compared to 

other works (Table.S5), this architecture demonstrates relatively low energy expenditure.  

Furthermore, this architecture is capable of mapping high-resolution images and handling 

exceptionally large data dimensions. Additionally, on the detection plane, physical hidden 

neurons reduction can be achieved by using low-resolution pixel detectors, significantly 

alleviating the computational burden on electronic computers.  

Except for the inference, our architecture has cost advantages over deep learning, especially 

for the training. Its training speed, in the order of seconds (Less than 1 second for β with 900 

hidden neurons and one selected C, while approximately 40 seconds for 10,000 hidden 
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neurons), makes it suitable for tasks requiring frequent training, without the need for high-end 

training hardware.  
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Table.S1 Regularization coefficient C for RNT-based neural network 

Datasets 
Duplicate 

array format 

Number of hidden neurons 

25 100 225 900 3,600 6,400 10,000 

MNIST 1×1 103 106 104 102 104 104 101 

Fashion-

MNIST 
1×1 106 106 107 105 103 102 101 

CIFAR-

10(grayscale) 

1×1 103 106 103 103 102 101 101 

5×5 103 105 103 104 102 101 101 

9×9 109 105 106 104 102 101 101 
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Table.S2 Regularization coefficient C for optical model-based neural network 

Datasets 
Duplicate 

array format 

Number of hidden neurons 

25 100 225 900 3,600 6,400 10,000 

MNIST 

1×1 108 106 107 109 105 105 104 

5×5 107 104 104 105 107 105 103 

9×9 106 105 104 106 106 102 105 

Fashion-

MNIST 

1×1 107 108 107 1010 108 107 106 

5×5 107 105 106 104 106 106 104 

9×9 104 108 107 106 105 107 104 

CIFAR-

10(grayscale) 

1×1 105 104 104 102 102 101 102 

5×5 104 104 104 102 102 101 101 

9×9 102 103 103 102 101 101 101 
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Table.S3 Regularization coefficient C for photonic neural network 

Datasets 
Duplicate 

array format 

Number of hidden neurons 

25 100 225 900 3,600 6,400 10,000 

MNIST 

1×1 102 101 100 101 100 10-1 10-1 

5×5 102 102 104 103 103 101 101 

9×9 103 103 104 103 102 102 102 

Fashion-

MNIST 

1×1 103 102 101 100 10-1 10-1 10-1 

5×5 105 105 103 103 101 101 104 

9×9 105 103 105 104 103 103 101 

CIFAR-

10(RGB) 

1×1 104 102 101 101 100 100 100 

5×5 103 103 101 100 10-1 10-2 10-2 

9×9 102 101 102 101 100 10-1 10-1 

CIFAR-

10(grayscale) 

1×1 106 102 101 104 102 101 101 

5×5 104 102 101 10-1 100 10-2 10-2 

9×9 104 103 102 102 101 100 100 
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Table.S4 Test accuracy of different architectures on three benchmark datasets 

Type Architecture MNIST(%) 
Fashion-

MNIST(%) 

CIFAR-

10(%) 

Digital 

LeNet29 99.4036 98.8037 66.4338 

AlexNet39 99.2340 88.8241 72.6438 

ELM42 97.39±0.142 93.3843 44.0944 

ML-ELM45 99.03±0.0410 93.5643 / 

SVM46 94.0047 83.2038 37.1338 

ResNet48 99.5138 93.2338 95.5549 

Electronic 

PCM Memristor ResNet-

3250 
/ / 93.70 

NeuRRAM51 99.00 / 85.70 

MRAM-DIMA52 ~98.00 / ~91.00 

STT-MRAM53 97.20 / 81.30 

Discrete Memristor NN54 97.16 / / 

Perovskite Memristor 

NN55 
/ 90.10 / 

STELLAR56 92.30 / / 

NWNs57 93.40 / / 

Hybrid 

OE-ELM24 ~98.00 / / 

OE-CNN9 / / 44.40 

OE-CNN58 98.00 / 54.00 

OE-PLNN59 96.36 / / 

OE-ELM23 92.18 / / 

OE-D2NN19 89.10 81.70 / 

OE-D2NN60 95.47 / / 

OE-LOEN61 97.21 / / 
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ACCEL20 85.50 82.00 / 

VCSEL neuron62 96.10 / / 

DPU35 96.60 84.60  

DANTE ONN63 ~96.00 / 51.00 

Optical 

D2NN4 88.00 90.00 / 

 D2NN18 84.00 / / 

ONN64 99.00 / / 

PCM chip15 95.30 / / 

PNN22 97.00 / / 

D2NN chip65 89.30 81.30 / 

Taichi66 / / 93.7 

 
Photonic multi-synapse 

neural network (this work) 
99.79 98.26 90.29 
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Table.S5 Energy efficiency of different architectures 

Architecture 
Energy 

efficiency(/MAC) 

MZI mesh10 30fJ 

DPU35 0.82fJ 

Sub-λ Nanophotonics69 30.6aJ 

WDM&PCM chip15 17fJ 

Photonic multi-synapse neural 

network (optical projections) 
0.2aJ 

 

 


